Efficient Algorithms for Mean-variance Portfolio Optimization with Hard Real-world Constraints

نویسندگان

  • Francesco Cesarone
  • Andrea Scozzari
  • Fabio Tardella
چکیده

The Markowitz mean-variance optimization model is a widely used tool for portfolio selection. However, in order to capture real world restrictions on actual investments, a Limited Asset Markowitz (LAM) model with the introduction of quantity and cardinality constraints has been considered. These two constraints have been modelled by adding binary variables to the Markowitz model, thus resulting in a Mixed Integer Quadratic Programming problem that is considerably more difficult to solve. We propose a new method for solving the LAM model based on a reformulation as a Standard Quadratic Program and on some recent theoretical results by the last two authors. We report optimal solutions of some previously unsolved benchmark problems used by several other authors and available from Beasley’s OR-Library. We also test our method on five new data sets involving real-world capital market indices from major stock markets. On these data sets we have been able to evaluate, on out-ofsample data, the performance of the portfolios obtained from the LAM model and to compare them to the classical Markowitz portfolio, and to the market index. This comparison seems to point in favour of the solutions obtained with the LAM model. We made our data sets and the solutions that we found publicly available for use by other researchers in this field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Algorithms for Mean-variance Portfolio Optimization with Hard Real-word Constraints

The Markowitz mean-variance optimization model is a widely used tool for portfolio selection. However, in order to capture real world restrictions on actual investments, a Limited Asset Markowitz (LAM) model with the introduction of quantity and cardinality constraints has been considered. These two constraints have been modelled by adding binary variables to the Markowitz model, thus resulting...

متن کامل

بررسی عملکرد الگوریتم GRASP درانتخاب پرتفوی بهینه ( با لحاظ محدودیت کاردینالیتی

در مساله بهینه سازی پرتفوی ، مدل مارکویتز همچنان به عنوان رویکرد غالب شناخته شده است اما چون محدودیت هایی که در دنیای واقعی نظیر محدودیت تعدادداراییهای سبد یا حداقل و حداکثر مقدار هریک از داراییها در این مدل درنظر گرفته نشده است، این مدل در حل مسائل دنیای واقعی بعضا ناتوان می باشد. به همین دلیل استفاده از الگوریتم های فراابتکاری با توجه به ویژگی های منعطفی که دارند میتوانند مفید واقع شوند. در ...

متن کامل

Mean-VaR portfolio optimization: A nonparametric approach

Portfolio optimization involves the optimal assignment of limited capital to different available financial assets to achieve a reasonable trade-off between profit and risk. We consider an alternative Markowitz’s mean-variance model in which the variance is replaced with an industry standard risk measure, Value-atRisk (VaR), in order to better assess market risk exposure associated with financia...

متن کامل

Stock Portfolio-Optimization Model by Mean-Semi-Variance Approach Using of Firefly Algorithm and Imperialist Competitive Algorithm

Selecting approaches with appropriate accuracy and suitable speed for the purpose of making decision is one of the managers’ challenges. Also investing decision is one of the main decisions of managers and it can be referred to securities transaction in financial markets which is one of the investments approaches. When some assets and barriers of real world have been considered, optimization of...

متن کامل

مقایسه روش های فراابتکاری برای

Abstract With the introduction of mean-variance model Markowitz took a giant step in modeling and optimizing portfolio type problems. But his model is based upon some assumptions that rarely they can hold in practice. For this reason, many researchers have taken steps both theoretical and practical to make some improvements to his standard mean-variance model. Up to now different risk criteria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008